Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
J Agric Food Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657235

RESUMO

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.

2.
ACS Appl Bio Mater ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651365

RESUMO

Bacterial invasion hinders the healing process of wound, leading to the formation of chronic infected wound; meanwhile, the misuse of antibiotics has resulted in the emergence of numerous drug-resistant bacteria. The application of conventional antimicrobial methods and wound treatment techniques is not appropriate for wound dressings. In this paper, quaternized poly(vinyl alcohol) (QPVA) and pomegranate-like copper uniformly doped polydopamine nanoparticles (PDA@Cu) were introduced into a gelatin-oxidized carboxymethyl cellulose system to form a multicomponent synergistic antibacterial hydrogel (GOQ3P3). Polydopamine improves the biocompatibility and prevents the detachment of Cu nanoparticles. It can achieve synergistic antibacterial effects through quaternary ammonium salt-inorganic nanoparticle photothermal treatment under 808 nm near-infrared (NIR) irradiation. It exhibits highly efficient and rapid bactericidal properties against Escherichia coli, Staphylococcus aureus, and MRSA (methicillin-resistant Staphylococcus aureus) with an antibacterial rate close to 100%. The gel scaffold composed of macromolecules gives the hydrogel excellent mechanical properties, adhesive capabilities, self-healing characteristics, biocompatibility, and pH degradation and promotes cell adhesion and migration. In a full-thickness wound healing model infected with MRSA, GOQ3P3 controls inflammatory responses, accelerates collagen deposition, promotes angiogenesis, and enhances wound closure in the wound healing cascade reaction. This study provides a feasible strategy for constructing dressings targeting chronic infection wounds caused by drug-resistant bacteria.

3.
Vet Microbiol ; 293: 110083, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38593623

RESUMO

Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. In this study, a retrospective analysis was conducted on previously collected Campylobacter isolates from antimicrobial resistance surveillance. A total of 29 optrA-positive C. coli strains were identified and subjected to second-generation sequencing. Multilocus sequence typing and single nucleotide polymorphism analyses demonstrated that the 29 optrA-positive isolates were genetically homogeneous. Notably, among the 29 isolated strains, the ΔoptrA variants exhibit a nonsense mutation at position 979 where the base C is substituted by T, leading to the formation of a premature termination codon. The alignment of sequences and genetic environmental characteristics suggested that ΔoptrA located on a chromosomally carried multidrug-resistant genomic island. There are other resistant genes on the multidrug resistance genomic island, such as aph(2'')-If, aph(3')-III, aadE, tet(O), tet(L), cat, erm(A), optrA and blaOXA-61. As a result, the 29 ΔoptrA-positive strains displayed susceptibility to both florfenicol and linezolid. The ΔoptrA gene is linked to the erm(A) gene, resulting in the formation of translocatable unit (TU) that are encompassed by two copies of IS1216 mobile elements. Multiple occurrences of similar TUs have been documented in numerous C. coli and provided evidence for the significance of TUs in facilitating the transfer of drug resistance genes in C. coli.

4.
Environ Res ; : 118923, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636641

RESUMO

Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.

5.
Front Microbiol ; 15: 1337655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500587

RESUMO

Introduction: Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods: In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion: The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.

6.
Free Radic Res ; : 1-14, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38478853

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, which causes renal dysfunction known as sepsis-associated acute kidney injury (S-AKI). Ferroptosis is a form of lipid peroxidation dependent on iron and reactive oxygen species that differs from other forms of programmed cell death at the morphological and biochemical levels. Andrographolide (AG), a natural diterpenoid lactone compound extracted from Andrographis paniculata, has been shown to have therapeutic effects in kidney disease. In this study, we investigated the novel mechanism by which AG attenuates septic acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells (HK-2) through the Nrf2/FSP1 pathway. Cecum ligation and puncture (CLP)-induced septic rats and lipopolysaccharide (LPS)-induced HK-2 cells were used for in vivo and in vitro experiments. Firstly, in septic rats and HK-2 cells, AG effectively decreased the levels of kidney injury indicators, including blood creatinine, urea nitrogen, and markers of kidney injury such as neutrophil gelatinase-associated lipid transport protein and kidney injury molecule-1 (KIM-1). In addition, AG prevented ferroptotosis, by avoiding the accumulation of iron and lipid peroxidation, and an increase in SLC7A11 and GPX4 in AG-treated HK-2 cells. Furthermore, AG attenuated mitochondrial damage, including mitochondrial swelling, outer membrane rupture, and a reduction in mitochondrial cristae in LPS-treated HK-2 cells. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, significantly inhibited LPS-induced ferroptosis in HK-2 cells. Importantly, our results confirm that Nrf2/FSP1 is an important pathway for ferroptosis resistance. Nrf2 siRNA hindered the effect of AG in attenuating acute kidney injury and inhibiting ferroptosis. These findings demonstrate that Nrf2/FSP1-mediated HK-2 ferroptosis is associated with AG, alleviates septic acute kidney injury, and indicates a novel avenue for therapeutic interventions in the treatment of acute kidney injury in sepsis.

7.
J Mater Chem B ; 12(10): 2571-2586, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38363109

RESUMO

Management of diabetic wounds presents a global health challenge due to elevated levels of ROS in the wound microenvironment, persistent dysregulation of inflammation modulation, and limitations in commercially available dressings. Addressing this issue, we have developed a pH-responsive and glucose-sensitive multifunctional hydrogel dressing that dynamically responds to the wound microenvironment and enables on-demand drug release. The dressing incorporates a matrix material based on aminophenylboronic acid-functionalized alginate and a polyhydroxy polymer, alongside an enhancer phase consisting of self-assembled metal-phenol coordination nanospheres formed by tannic acid and iron ions. Using the dynamic borate ester bonds and catechol-metal ion coordination bonds, the dressing exhibits remarkable shape adaptability, self-healing capability, tissue adhesiveness, antioxidant activity, and photothermal responsiveness, without additional curatives or crosslinking agents. As a wound dressing, it elicits macrophage polarization towards an anti-inflammatory phenotype while maintaining long-lasting antimicrobial effects. In a diabetic mouse model of full-thickness wound infections, it effectively mitigated inflammation and vascular damage, significantly expediting the wound healing process with a commendable 97.7% wound closure rate. This work provides a new direction for developing multifunctional smart hydrogel dressings that can accelerate diabetic wound healing for human health.


Assuntos
Diabetes Mellitus , Nanosferas , Polifenóis , Humanos , Animais , Camundongos , Fenóis , Metais , Alginatos , Inflamação , Hidrogéis/farmacologia
8.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38318638

RESUMO

Chromoblastomycosis (CBM), a chronic, granulomatous, suppurative mycosis of the skin and subcutaneous tissue, is caused by several dematiaceous fungi. The formation of granulomas, tissue proliferation, and fibrosis in response to these pathogenic fungi is believed to be intricately linked to host immunity. To understand this complex interaction, we conducted a comprehensive analysis of immune cell infiltrates, neutrophil extracellular traps (NETs) formation, and the fibrosis mechanism in 20 CBM lesion biopsies using immunohistochemical and immunofluorescence staining methods. The results revealed a significant infiltration of mixed inflammatory cells in CBM granulomas, prominently featuring a substantial presence of Th2 cells and M2 macrophages. These cells appeared to contribute to the production of collagen I and III in the late fibrosis mechanism, as well as NETs formation. The abundance of Th2 cytokines may act as a factor promoting the bias of macrophage differentiation toward M2, which hinders efficient fungal clearance while accelerates the proliferation of fibrous tissue. Furthermore, the expression of IL-17 was noted to recruit neutrophils, facilitating subsequent NETs formation within CBM granulomas to impede the spread of sclerotic cells. Understanding of these immune mechanisms holds promise for identifying therapeutic targets for managing chronic granulomatous CBM.


Assuntos
Armadilhas Extracelulares , Animais , Neutrófilos , Fibrose , Granuloma/veterinária , Imunidade
9.
Glob Chang Biol ; 30(2): e17160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379454

RESUMO

Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the ß-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Bactérias/genética , Fósforo
10.
Phys Rev E ; 109(1-1): 014313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366519

RESUMO

The existence of neutral species carries profound ecological implications that warrant further investigation. In this paper, we study the impact of neutral species on biodiversity in a spatial tritrophic system of cyclic competition, in which the neutral species are identified as the fourth species that may affect the competition process of the other three species under the rock-paper-scissors (RPS) rule. Extensive simulations showed that neutral species can promote coexistence in a high mobility regime within the system. When coexistence occurs, we found that the state can be maintained by two mechanisms: Species can either (i) adhere to traditional RPS rule or (ii) form patches to resist invasion. Our findings might aid in understanding the impact of neutral species on biodiversity in ecosystems.

11.
Food Chem X ; 21: 101198, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370303

RESUMO

This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.

12.
Adv Mater ; 36(16): e2311992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183353

RESUMO

Advances in modern industrial technology continue to place stricter demands on engineering polymeric materials, but simultaneously possessing superior strength and toughness remains a daunting challenge. Herein, a pioneering flexible cage-reinforced supramolecular elastomer (CSE) is reported that exhibits superb robustness, tear resistance, anti-fatigue, and shape memory properties, achieved by innovatively introducing organic imide cages (OICs) into supramolecular networks. Intriguingly, extremely small amounts of OICs make the elastomer stronger, significantly improving mechanical strength (85.0 MPa; ≈10-fold increase) and toughness (418.4 MJ m-3; ≈7-fold increase). Significantly, the cooperative effect of gradient hydrogen bonds and OICs is experimentally and theoretically demonstrated as flexible nodes, enabling more robust supramolecular networks. In short, the proposed strengthening strategy of adding flexible cages effectively balances the inherent conflict between material strength and toughness, and the prepared CSEs are anticipated to be served in large-scale devices such as TBMs in the future.

13.
J Chem Inf Model ; 64(3): 785-798, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38262973

RESUMO

The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.


Assuntos
Fragmentos Fc das Imunoglobulinas , Simulação de Dinâmica Molecular , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Isotipos de Imunoglobulinas , Conformação Molecular , Polissacarídeos
14.
BMC Plant Biol ; 24(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163910

RESUMO

BACKGROUND: Kernel dehydration is an important factor for the mechanized harvest in maize. Kernel moisture content (KMC) and kernel dehydration rate (KDR) are important indicators for kernel dehydration. Although quantitative trait loci and genes related to KMC have been identified, where most of them only focus on the KMC at harvest, these are still far from sufficient to explain all genetic variations, and the relevant regulatory mechanisms are still unclear. In this study, we tried to reveal the key proteins and metabolites related to kernel dehydration in proteome and metabolome levels. Moreover, we preliminarily explored the relevant metabolic pathways that affect kernel dehydration combined proteome and metabolome. These results could accelerate the development of further mechanized maize technologies. RESULTS: In this study, three maize inbred lines (KB182, KB207, and KB020) with different KMC and KDR were subjected to proteomic analysis 35, 42, and 49 days after pollination (DAP). In total, 8,358 proteins were quantified, and 2,779 of them were differentially expressed proteins in different inbred lines or at different stages. By comparative analysis, K-means cluster, and weighted gene co-expression network analysis based on the proteome data, some important proteins were identified, which are involved in carbohydrate metabolism, stress and defense response, lipid metabolism, and seed development. Through metabolomics analysis of KB182 and KB020 kernels at 42 DAP, 18 significantly different metabolites, including glucose, fructose, proline, and glycerol, were identified. CONCLUSIONS: In sum, we inferred that kernel dehydration could be regulated through carbohydrate metabolism, antioxidant systems, and late embryogenesis abundant protein and heat shock protein expression, all of which were considered as important regulatory factors during kernel dehydration process. These results shed light on kernel dehydration and provide new insights into developing cultivars with low moisture content.


Assuntos
Desidratação , Zea mays , Zea mays/metabolismo , Desidratação/genética , Proteoma/metabolismo , Proteômica , Locos de Características Quantitativas
15.
BMC Pulm Med ; 24(1): 20, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191360

RESUMO

BACKGROUND: Serum tumor markers (STM), extensively used for the diagnosis, monitoring and prognostic assessment of tumors, can be increased in some non-malignant lung diseases. To date, there is a paucity of studies regarding the clinical characteristics of non-cystic fibrosis bronchiectasis patients with positive STMs. OBJECTIVE: To investigate the clinical characteristics and indicators of bronchiectasis with positive STMs. METHODS: The clinical data of 377 bronchiectasis patients was retrospectively collected from January 2017 to December 2019 from Beijing Chaoyang Hospital. Patients were divided into the STM negative group, the single STM positive group and the ≥2 STMs positive group according to the number of the positive STMs. The clinical characteristics are described and compared separately. The multivariate logistic regression analysis model was used to investigate the indicators regarding positive STMs. RESULTS: Patients in the ≥2 STMs positive group were older (P = 0.015), had higher mMRC scores (P < 0.001) and developed higher fever (P = 0.027). Additionally, these patients also had lower Albumin/Globulin Ratio (A/G), albumin (ALB), prealbumin (PAB) (P < 0.001, P < 0.001, P < 0.001, respectively) and higher CRP, ESR and Fbg (P < 0.001, P < 0.001 and P < 0.001, respectively). Age (OR 1.022, 95%CI 1.003-1.042; P = 0.026) and the number of affected lobes (OR 1.443, 95%CI 1.233-1.690; P < 0.001) were independently associated with one and ≥ 2 positive STMs in bronchiectasis patients. CONCLUSION: The ≥2 positive STMs are associated with a higher inflammation status and severer radiologic manifestations in bronchiectasis patients.


Assuntos
Bronquiectasia , Neoplasias , Humanos , Biomarcadores Tumorais , Estudos Retrospectivos , Albuminas , Bronquiectasia/complicações
17.
Immun Inflamm Dis ; 12(1): e1098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270302

RESUMO

AIMS: Growing clinical evidence suggests that not all patients with rheumatoid arthritis (RA) benefit to the same extent by treatment with tripterygium glycoside (TG), which highlights the need to identify RA-related genes that can be used to predict drug responses. In addition, single genes as markers of RA are not sufficiently accurate for use as predictors. Therefore, there is a need to identify paired expression genes that can serve as biomarkers for predicting the therapeutic effects of TG tablets in RA. METHODS: A total of 17 pairs of co-expressed genes were identified as candidates for predicting an RA patient's response to TG therapy, and genes involved in the Lnc-ENST00000602558/GF1 axis were selected for that purpose. A partial-least-squares (PLS)-based model was constructed based on the expression levels of Lnc-ENST00000602558/IGF1 in peripheral blood. The model showed high efficiency for predicting an RA patient's response to TG tablets. RESULTS: Our data confirmed that genes co-expressed in the Lnc-ENST00000602558/IGF1 axis mediate the efficacy of TG in RA treatment, reduce tumor necrosis factor-α induced IGF1 expression, and decrease the inflammatory response of MH7a cells. CONCLUSION: We found that genes expressed in the Lnc-ENST00000602558/IGF1 axis may be useful for identifying RA patients who will not respond to TG treatment. Our findings provide a rationale for the individualized treatment of RA in clinical settings.


Assuntos
Artrite Reumatoide , Glicosídeos , Humanos , Glicosídeos/uso terapêutico , Tripterygium , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Expressão Gênica , Fator de Crescimento Insulin-Like I/genética
18.
J Agric Food Chem ; 71(50): 20034-20046, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054647

RESUMO

Lycopene (LYC) exerts a strong neuroprotective and antipyroptotic effects. This study explored the effects and mechanisms of LYC on chronic stress-induced hippocampal microglial damage and depression-like behaviors. The caspase-1 inhibitor VX-765 attenuated chronic restrain stress (CRS)-induced hippocampal microglial pyroptosis and depression-like behaviors. Moreover, the alleviation of CRS-induced hippocampal microglial pyroptosis and depression-like behaviors by LYC was associated with the cathepsin B/NLRP3 pathway. In vitro, the caspase-1 inhibitor Z-YVAD-FMK alleviated pyroptosis in highly aggressively proliferating immortalized (HAPI) cells. Additionally, the alleviation of corticosterone-induced HAPI cell damage and pyroptosis by LYC was associated with the cathepsin B/NLRP3 pathway. Furthermore, the cathepsin B agonist pazopanib promoted HAPI cell pyroptosis, whereas LYC inhibited pazopanib-induced pyroptosis via the cathepsin B/NLRP3 pathway. Similarly, Z-YVAD-FMK inhibited pazopanib-induced HAPI cell pyroptosis. These results suggest that LYC alleviates chronic stress-induced hippocampal microglial pyroptosis via the cathepsin B/NLRP3 pathway inhibition. This study provides a new strategy for treating chronic stress encephalopathy.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Licopeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Microglia , Transdução de Sinais , Hipocampo , Inflamassomos/genética , Inflamassomos/metabolismo
19.
Small ; : e2310612, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087883

RESUMO

The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.

20.
Genes (Basel) ; 14(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38136992

RESUMO

Sclerotium rolfsii is a destructive soil-borne fungal pathogen that causes stem rot in cultivated plants. However, little is known about the genetic basis of sclerotium development. In this study, we conducted de novo sequencing of genes from three different stages of S. rolfsii (mycelia, early sclerotium formation, and late sclerotium formation) using Illumina HiSeqTM 4000. We then determined differentially expressed genes (DEGs) across the three stages and annotated gene functions. STEM and weighted gene-co-expression network analysis were used to cluster DEGs with similar expression patterns. Our analysis yielded an average of 25,957,621 clean reads per sample (22,913,500-28,988,848). We identified 8929, 8453, and 3744 DEGs between sclerotium developmental stages 1 versus 2, 1 versus 3, and 2 versus 3, respectively. Additionally, four significantly altered gene expression profiles involved 220 genes related to sclerotium formation, and two modules were positively correlated with early and late sclerotium formation. These results were supported by the outcomes of qPCR and RNA-sequencing conducted on six genes. This is the first study to provide a gene expression map during sclerotial development in S. rolfsii, which can be used to reduce the re-infection ability of this pathogen and provide new insights into the scientific prevention and control of the disease. This study also provides a useful resource for further research on the genomics of S. rolfsii.


Assuntos
Basidiomycota , Perfilação da Expressão Gênica , Basidiomycota/genética , Transcriptoma/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...